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constants have been already tabulated in Table I. 
The elastic and thermal properties of each solid used 
in the construction of Table I are sununarized in Tables 
V and VI. The computed values of polycrystalline 
acoustic data corresponding to three thermodynamic 
boundary conditions are illustrated in Table VII with 
crystalline MgO as an example. In Table VII, also 
entered are two other values of pressure derivative of 
the bulk modulus; one is a theoretical value based on 
the Dugdale-MacDonald relation,12 and the other is 
derived from the Murnaghan equation of state13 by a 

curve-fitting procedure using experimental com pression 
data. 14- 17 It is seen here that these values compare very 
well with the corresponding quantiti es resulting from 
the ultrasonic-pressure experiments made on both the 
single-crystal and polycrystalline materials . 

5. CALCULATION OF THE POLYCRYSTALLINE 
ACOUSTIC DATA FROM THE SINGLE-CRYSTAL 

THIRD-ORDER ELASTIC CONSTANTS 

The pressure-dependent second-order elastic con­
stants can be written in a formll .18 

(50) 
where 

Dijkl=OijOkl-O,zOjk-Oi~jl' 

V denotes the volume of crystal at a reference state characterized by the hydrostatic pressure p, and 1i is the 
strain tensor corresponding to an arbitrarily deformed state characterized by that pressure p. VO is defined by the 
rela tion (V /VO) =1,3, where A is a factor given 'by the coordinates of a material point in two reference states ai 
and aio according to (a;j a,O) .;, A. The Lagrangian strain tensors19 corresponding to these two reference states T/;, 

and 'T/l are then related by 

where E=t(A2-1). Keeping in mind the relations (a/ap)"T=-(V/K"T)(a/aV)"T and (aA/aV)o=(aE/aV )o = 
1/3Vo, one finds by differentiating Eq, (50) that ' 

(ac' ,jkl/ ap) S = - (l/3K') ( (l/VO) [a2U (VO, S, 1i) / a'T/,ja'T/kl]V',S-const .. n-o 

+(1/V.)[a3U(VO, S,1i)/a'T/".(J'T/kla'T/m .. ]V',S_ono,.,n-o}+Dijkl, (51) 
and 

(aC'ijkl/a ph= - (1/3KT)( (l/VO) [a2U(VO, S, 1i) /a7liJ.(J'T/u]V·,S_ono,.,n-o 

+ (l/VO) { (a/a'T/mn) [a2U (VO, S, 1i) /a'T/;ja'T/kl]V·,S-con8t.,n-o} V·,S-const. ,n-o)+ Dijkl. (52 ) 

Note that the first terms in Eqs.· (51) and (52) are by definition the zero-pressure second-order elastic constants. 
The second term in Eq. (51) is the zero-pressure third-o~der elastic constants, whereas that in Eq. (52) is by 
definition thermodynamically "mixed" third-order elastic constants at p=O. Hence, from these, we obtain the 
familiar expressionsll 

and 

where 

Similarly, we find 

(ac',;H/aph= - [(C'i;kl+Cijklmm) /3KT]+Dijkl, 

C;jklmm = (1/ A) {C' ;jklmm+ T'Ya[ - fjC' ,jkl+3 (aC' ,jkl/ aT) p]} • 

(aCTijkJap h= - [( CTijkl+CT,jk;mm) /3KT]+ D'jkl . 

(53) 

(54) 

(55) 

(56) 

The quantities specified by Eq. (55) are certain linear combinations of the third-order elastic constants C;jkl •• n, 
and they are the primary experimental quantities when ultrasonic-pressure experiments are made with hydro­
static pressure. Thus, for cubic crystals, C;jklmm reduces to the following: 

Cr=Cllllii=Cl1l+ 2Cll2 = - [3KT(aCll'/aph+3KT +cu'], 

Cll = Cl12'W = 2C1I2+C123 = - [3KT(aC12'/ap )T- 3KT + C12'] , 

CIII =C1212ii=C144+2cl66= - [3KT(ac«/ap)T+3KT +C«], 
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